
PHASE BOUNDARY INSTABILITY DURING PHASE CONVERSION UNDER PRESSURE 

Yu. Ya. Boguslavskii UDC 536.424 

The problem of instability of the boundary of a spherical nucleus during solidification 
of gases under diffusion growth conditions was considered in [I, 2]. The question of stabil- 
ity of a planar boundary between two phases during phase conversion was first formulated in 
[3], which considered solidification of one of the components of a binary alloy. However, as 
was noted in [2], [3] suffers from the serious shortcoming that it does not consider the decrease 
in velocity of the front motion with time. The problem of development of distortions in a 
planar phase boundary with time was solved in [2] in the linear approximation with considera- 
tion of the fact that diffusion cannot supply the quantity of dissolved material necessary 
to insure motion of the planar front at constant velocity. The present study will consider 
development of instability over time in spherical and planar phase boundaries during phase 
conversion under pressure in the linear approximation. Mathematically this problem differs 
from that considered in [1-3] in that it considers the change in supersaturation with pressure 
6p as a function of time, which has a significant effect on instability development. The time 
change of 6p can either be specified, or produced by a change in volume upon phase transition 
(synthesis in a constant-volume high-pressure chamber, in a regulated high pressure chamber, 
or in shock waves). We will also examine development of instability in a spherical phase 
boundary with consideration in the thermal conductivity equation of the finite rate of motion 
of the phase conversion front and the temperature dependence of the thermal conductivity coef- 
ficient. A possible mechanism for formation of polycrystals of varying dispersion is con- 
sidered. The results obtained can be applied to diffusion synthesis of a new phase when the 
concentration of the dissolved material is a function of time. Such a situation occurs, for 
example, in the process of diffusion synthesis of diamond under pressure, in which case the 
pressure drop in the chamber produced by the phase transition leads to a decrease in the con- 
centration of dissolved graphite in the catalyst. 

i. Formulation of the Problem. It is known that motion of the new phase boundary in 
phase transitions of the first sort is accompanied by liberation or absorption of heat. In 
the case of diffusionless phase transitions, no matter what the phase transition mechanism, 
as a rule the process of thermal relaxation is the slowest process in the system, so that growth 
of the new phase is controlled by heat liberation from the boundary where the phases contact 
each other. The problem can be solved in the isotropic approximation by assuming that elas- 
tic stresses which develop in the conversion process do not affect the rate of phase motion 
boundary. This is possible in the case where the stresses developing during front motion are 
relaxed by plastic deformation, i.e., the rate of phase transition front motion is less than 
the plastic deformation rate. 

To describe the development of phase boundary distortions over time in the linear approx- 
imation we write the thermal conductivity equation for the first phase: 

~T/Ot = xIAT. (i.i) 

On the phase boundary the condition 

TIs = To (i - -  2~/ (p2qn) )  ( 1 . 2 )  

must be satisfied. Removing the thermal flux from the phase transformation boundary leads to 
motion of the latter: 

__• = p2q~. (1.3) 

The condition 

defines the critical nucleus size R,. 
tween the two phases in equilibrium; Xl, thermal diffusivity of phase I; 

7'= = ~'o (~ - 2~ / (p~qR , ) )  ( 1 . 4 )  

Here T O is the temperature on the plane boundary be- 
P2, density of the 
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nucleus; q, heat of phase transition; ~, surface tension coefficient; R, radius of the nucle- 
us; , thermal conductivity coefficient of phase i; v. , normal velocity of phase conversion 
front; T~, temperature of phase 1 at large distances from the front. 

The phase boundary is constantly in thermodynamic equilibrium, and change in temperature 
on the planar phase contact boundary is defined by the Clapeyron-Clausius equation 

o = To - T~ = T~ (V~ - v~) @I~ ( 1 . 5 )  

(where  V = 1 / 9 z ,  Va = 1 /p2  a r e  t h e  s p e c i f i c  v o l u m e s  o f  p h a s e s  1 and 2 ) .  

2. Instability in the Motion of Spherical Nucleus Phase Boundaries. The spherically 
symmetric solution of Eq. (i.i) in a coordinate system fixed to the phase conversion front 
with neglect of heat liberation inertia is 

T 

T (r) - -  Too = - -  R + OR,- E., (z) 

oo 

R -~F/X~ ; d S r  I ,, where  z = E~,(z)= e x p { - - z t } , ~ ;  O , = T n - - T o ~  
1 

( 1 . 4 ) ) .  S u b s t i t u t i n g  Eq. ( 2 . 1 )  in  Eq. ( 1 . 3 ) ,  we h a v e  

(2.1) 

(as follows from Eqs. (1.2), 

nl 0 e -~ ( 2 . 2 )  

(Tq = q/C, where  C i s  t h e  s p e c i f i c  h e a t ) .  

When the form of the nucleus deviates from spherical, for its temperature and radius 
we take the following 

T ' =  T(r) + E (  R---)'+'f,,~(r)Y,m(~]), R'=R(t)4-X~l.n(t)Ylm(Q) ( 2 . 3 )  
lQ "r~x r # l ~  

(Y~m(~) a r e  s p h e r i c a l  h a r m o n i c s ) .  L i n e a r i z i n g  t h e  b o u n d a r y  c o n d i t i o n s  ( 1 . 2 ) ,  ( 1 . 3 )  w i t h  r e -  
s p e c t  t o  ~ w i t h  t h e  a i d  o f  Eq. ( 2 . 3 ) ,  we o b t a i n  

OT To~ (1 -- l) (l + 2) 
~Tr ~ ~z~ + h,, ,  (R) = - ~l~, P2qn~ ( 2 . 4 )  

d~l.,. O"T I " ! + 1 X Oftm 
D2q dt • - -  ~lm + ]tin (t:l) - -  o,'~ ~t •  1 -o-7- I~" 

Substituting Eq. (2.3) in Eq. (i.i), we find an equation for definition of fs 

d2flm ( z 2l )df lm z ( / + l )  t [ r ~l+Id~lm or 
dr -''-Lf-~' + B 7 dr Rr /l,n ---- -- %'-~\--~- ] -~ Or" ( 2 . 5 )  

For sufficiently high phase boundary velocity the major change in temperature will occur 
in a thin boundary layer with little curvature. We take r = R(t) + y, y << R. In the first 
approximation, in place of Eq. (2.5), we write 

d ] l m Z ( l  + Tq d~l,n ( } d~/im I (z 2l) t(' I)/l,~ P~ z dV ~ + B-  - -  @ - -  = ~ G z - - ~  - c x p  - - - f l Y "  ( 2 . 6 )  

The required solution of Eq. (2.6), vanishing at infinity, is 

Tqp2 _Bt d~z'n e x p { _  z } 
]z,~ = Azmexpk~y + Zl Pl l --  dt --fly (2.7) 

Substituting Eq. (2.7) in Eq. (2.4) with the aid of Eqs. (2.1) and (2.2), we find 
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~,~ __ z~ (/~ u + ~) + ~P" " ~ - -~) _ 

~ I m d t  2R 2h 
( 2 . 8 )  

n~To? (z ~- 2 + ]/rz (z + 4) § 4/~) (1 -- t) (l -{-,2) _ _ L  

- -  2p2qRah 

F or  z >> 1, R >> R , ,  i t  f o l l o w s  f rom Eq. ( 2 . 2 )  t h a t  

z 28 O ( 2 . 9 )  
Tq - -  0 T q  �9 

For the instability increment [2], which compares growth in the deviation $ to growth 
of the nucleus itself R, we obtain 

d �9 ~,~ (t) X~ ( ]/~ (~ + 4) + 4Z 2 -- ~ -- 2 (I + h)) 

~* = 7F In -~(t) = 2huh -- ( 2. i0) 

~,ro ~ (l - 1) (z + ~) (~ + 2 + V ; ( ~  + 4) + ~) 
2p.zqRah 

Equation (2.10) gives a correct result for z<< 1 , since the solution of Eqs. (2.5), (2.6) 
in this case is f~m = A~m and Eq. (2.3) is a solution of Eq. (i.i). It is evident from Eq. 
(2.10) that with growth of the nucleus, perturbations with an ever increasing ~ lose stability. 
Instability first develops for a given s at 

Rct = • ? (1 --[) (1 -~- 2) (z -~- 2 + ] /z  (z -~- 4) + 4/2) 
o~qzzz ( ] /z  (z + 4) § 4P - z -  2 (1 + h)) ( 2 . 1 1 )  

For z << i, R >> R... from Eq. (2.2) we obtain z : p,O/(9~Tq) and instability first develops for 
Rc~ ~---40• at Z = 3, as in [2]. It should be noted that Rcs for z >> 1 is signifi- 
cantly smaller than for z << i. Moreover, at z >> 1 perturbations with various s become un- 
stable at practically the same time as compared with perturbation stability loss at z << i. 

In a constant-volume chamber nuclei grow under conditions of falling pressure, produced 
by the phase transition. In this case the expression for the instability increment (for 
z << i) 

4 Zl = ~,lToo(Vl --V~)(l--2),, ~, . 5Po • ~ .~ [2(/  - -  2) + (l 2 - -  1 ) ( / +  2)1 - -  -5 -nNT~•  V.~)~(1 - -  2) R (2 12)  
p2q-R p2 q R 

4 V~--Vo R ~ Here 5P0 is the can be otained from Eqs. (2.10) and (1.5) with 6p=~p0--7~NK I ~V 2 " �9 

initial supersaturation; N is the number of nuclei per unit volume; K l is the modulus of volume 
compression of phase i. 

Setting Eq. (2.12) equal to zero, we obtain 

t~ 4 ~ dR ~ - e  = O, ( 2 . 1 3 )  

where d = - -  
3 5P o 3 a [ 2 ( l - - 2 ) + ( l  2-1)( l -~-2)]  
4 ~tNKlP 2(V 1 - r ~ ) '  e 4 ~ p,~(V 1-V2)2NK 1(1-2)  

Equation (2.13) has two positive 

r o o t s :  R~,2 = ~ 1 / 4  =7 ( - -d / l i t  8gl - -  gl/2) 1/~" 

(yl= V-q+ D= V2S0--e'/27>o, q= 

Near the values e/d and 1 ~ - ~ 1  

o:[2(1__2)+(12--t)( l§ [ 4 (2(1--2)-]-(12--t)(l-{-2))aNK1 ] 
t~,1,'~ (l__2) p2(Vl__V2)6p ~ t H---~-n~Z3X - - - ' - :  . . . . . .  p~ ( v l  - v2 )  2 r - 2) 3 (@o)~ '~ 

3 6p ~ ~I/a i [2 ( l --  2) § (l 2 -  i) (l§ 2)] 
tt~ ~_ --4" nNKF, 2 (V~ -- V2~ ] - -  -~- ~ ~2 (v~ - v:) @o 

(2.14) 

(2.15) 
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Perturbations lose stability (~ > 0) at R I < R < R 2. It follows from Eqs. (2.14), (2.15) 
that for a sufficiently large pressure drop in the chamber produced by the change in volume 
upon phase transition, perturbations with large ~ become stable one after the other. 

If there is a sufficient quantity of new phase nuclei in the constant-volume chamber, 
arbitrarily distributed over size, then at OR<< T K and insignificant supersaturation dp a 
stage of coalescence sets in, caused by thermal diffusion, which is completely analogous to 
the coalescence stage in the diffusion process of new phase nucleus formation in decomposition 
of a supersaturated solid solution considered in [4]. The law of increase in mean and maximum 

/ 4 \~/a 
size of new phase nuclei is then <B> =B.=(-~-xl~t) , Rm=-~<R>(~=2aCTo/(p,q2)), and from 

Eq. (2.10) we obtain %s < 0 for all s Hence, in the coalescence stage, perturbations with 

~ {to~" [ 9 P ~  (l + i  ) 
any ~ are stable. Theydiappear following the law ~L =~o~--UJ , where n=(/--l) L ~ 

] 

2)--+I;~10 is the value of the initial perturbation with orbital moment ~; t o is the in- + 

itial time. 

Of special interst is the effect of the temperature dependence of the thermal conductiv- 
ity coefficient on development of phase boundary instability. In the approximation of slow 
phase boundary motion (z << i) and neglect of inertia of heat removal from the boundary, the 
thermal conductivity equation for phase I can be written in the form 

div (• grad T) = 0. (2 .16)  

We will choose the simplest form of the thermal conductivity coefficient temperature depend- 
ence: • ~ • %(T-- T=)) . Then the solution of Eq. (2.16) is 

7 ' - -  Too + "-~"-~ ( ]  -- Too) 2 -- 

r 
l,m 

Calculation of the instability increment for R >> R, yields 

%~ • 2)( 0 + __~__ 0~) ?• (~ +2~(0  + .-~- 02)) 1/~ 

p2 q - p2qR a 

[ R ~ l+ l  + ) r,m(a). 

(l =- I)(l +2) (2.17) 

It follows from Eq. (2.17) that the value of Rc~ characterizing the onset of instability for 
a perturbation with a given ~ is less for X < 0 and greater for % > 0 than at X = 0. 

3. Instability of a Planar Phase Boundary. We will consider the question of instab- 
ility of a planar new phase front with the condition that 6p is an arbitrary function of time. 
We will assume that the motion of the interphase boundary is slow in comparison to thermal 
conductivity. The solution of Eq. (i.i) is then 

T (x, t) - T~ = 

t 

r~ ~-x~ e x p - ~ Z l ( t  ~)](t ,)~/~ 
2q (a%1) 1/2 0 -- -- 

We describe the interphase boundary by the equation 

X 0 

t 

 )dT. (3.2)  

We will study small perturbations of Eq. (3.1) in the manner of [2], first considering a sin- 
gle Fourier component. We take 

T' = T (x, t) + fk (x, t)eikQ, ( 3 . 3 )  

where fk(x, t) is a small temperature perturbation defining a small perturbation of the inter- 
phase boundary: 

x6 = Xo + ~h (t) eik~. ( 3 . 4 )  
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The vectors @, k lie in the plane of the unperturbed phase boundary. 

The boundary conditions (1.2), (1,3) linearized with respect to ~ have the form 

~ T ,~ �9 D: I:c{, + ~V x ~ 

It follows from Eqs. (3.3) and (i.i) that 

Using the quasisteady-state condition 

The final result is 

z l BSt, o 

• o 
v o (t) -- (~Xtt):/~ 

T~ B 
9:q ' 

(3.5) 

( 3 . 6 )  

(~% - /~I ,<} .  ( 3 . 7 )  
0 2  

O/h/Ot<< xik:lk, we o b t a i n  f rom Eqs .  ( 3 . 5 ) - ( 3 . 7 )  

~ k = ~ o ~ A ( t )  e x p [ ! k ( V o ( ~ ) - - v k ) d ' ~ ] ,  (3.8) 

• B [~,Sp (t .c)-:/.>_d:. 
2-Ti- 

n~ B` ~ 05p 
- -  + (~)1i~ j - - ~  (~- ~)-:~ ~ '  

l) 

I But } Too(V,--., V~), A ( t ) = e x p { - - ~ ( 6 p ( t ) - - S p 0 )  . 
p~q- 

A ~o~e  ~k'-, exp d'r <{'k (~, t) = . (~o (:) - vh) (2~)'" 

For example, let 6p = ~t. (3.8) 

2o)Bt  1/2 ToYlC2 
(uX:I):/~ > p2 q , i.e., perturbations with e k ~ < 2 (Y l -- V2) oJp.,t lk2 = k~.(t) are unstable. 

in t, perturbations with ever increasing k become unstable. 

It follows from the integral of Eq. (3.9) at sufficiently large t that 
oo 

e~P t -  ~-ITV hm 
0 0 

(p (k~, t) >> t ,  A ~ I .  

In Eq (3.10) the function q)(k, t) -~ 4 B(~t31~ 7. __ • To Yk~t 
" Y• (=Z:) :I" ~ P/! 

its maximum. (Since it is necessary that the condition 
maximum time t is limited and defined by the value of ~. ) 

Then for a given t, the exponential in Eq. 

( 3 . 9 )  

is positive for 

With increase 

( 3 . 1 o )  

is expanded in a series in k near 

Vo(t)(tix1) I/~ << i be satisfied, the 

The initial perturbations $0k are unknown. We will assume that ~0k k is a slowly varying 
function of k. Then from Eq. (3.10) we finally obtain 

f p2 ] ?t~m o 

where km 2 [o) (V t -- V2) P.z] 1/2 tl/r 2• 0 [a0) 'V V x] 1/3 = _ _ .  02 = _ t : --  2JJ - t~/4; (k.~, t) = ~0 ~lT0 [(V 1 - -  72) 0)] 3/2 t7/4 
3 ~t~ (~X:),/~ ' ~/U'(~?~,) ' :  ~? 27 ~,/:qb~/~ (~x~)~!~ It 

is evident that instability of the planar interphase boundary at sufficiently large times in- 
creases in this case as the exponential of t 7/~. 

4. Mechanism for Formation of Polycrystals of__Various Dispersions. It is obvious that 
the absence of increasing random perturbations during motion of the interphase boundary en- 
courages production of a high-quality defect-free homogeneous crystal. It is also natural 
to assume that to produce a single-crystal, the initial form perturbations of nuclei with vari- 
ous .s must attenuate with time. Consequently, large single-crystals can be grown only with 
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a very small supersaturation, or during the coalescence stage. However in the case where the 
nucleus size R > Rc3 and perturbations increase with time, one can propose a hypothesis con- 
cerning a possible mechanism for formation of polycrystals of various dispersions. 

We will assume that the size of a crystallite in the polycrystal is the maximum size 
at which random perturbations of its form still decay with time. Beginning at some sizefrandom 
perturbations of crystallite form can no longer be stabilized. They become nuclei of a new 
crystallite which grows together with the initial one (it is possible that the process of poly- 
crystal formation passes through a stage of fractionation with subsequent merging together, 
but with lower system elastic and surface energy). Perturbations of various types which disturb 
nucleus form always exist under real conditions. From Eqs. (2.2), (2.8) it follows that ~t ~ 

~ot (R/Rc:~) (]/z(~4)+4.[~-z-2)/2h ' i.e., perturbations increase rapidly with increase in s and R. There- 

fore the characteristic scale of a crystaliite in the polycrystal Rcr ~ Rc3. We will use Eq. 
(2.11) to estimate the size of a crystallite in the polycrystal for the case of the graphite- 
diamond transformation. We have a ~ i0-4-i0 -3 J/cm 2, V I --V 2 =0.17 g/cm 3, P2 =3.5 g/cm 3, 
and for 6p ~ 0.I GPa we obtain Rc3 m i0-4-i0 -3 cm, which corresponds to experimental data. 

If the polycrystals grow under conditions of a pressure drop in the chamber, produced 
by the phase transition, then, as follows from Eqs. (2.14), (2.15), the polycrystallin e nucleus 
is inhomogeneous: crystallites on the periphery are coarser than in the center. 

The proposed mechanism for polycrystallite formation is kinetically and thermodynamical- 
ly preferable to the known mechanism of spontaneous formation of a large quantity of new 
phase nuclei immediately over the entire volume, followed by subsequent growth and merger. In 
fact, as is well known [5], the number of nuclei (per sec, per cm 3 of medium) which traverse 

the critical region under steady-state conditions is S= 2 B(R,)/o(R.) , where ]0(R,) = 

R2* exp -- B(R,) is the diffusion coefficient in dimensional space; vl, v2 are the vol- vlv-- ~ ~ j  ; 

ume of the phases per molecule. 

With the aid of Eq. (2.2), we obtain 

s = fdri @ exp i 
4~M2(VI--V=) k@] l 

16 ~v~a 
3 (v 1 -  %)2r(@)r 

(4.1) 

(where N A is Avogadro's number and M is the molecular weight). 

A diamond polycrystal ~i cm in size contains ~i012-i0 s crystallites. Yet, as follows 
from Eq. (4.1), the number of nuclei traversing the critical region is very small. 

. 

2. 

3. 

4. 

5. 

LITERATURE CITED 

W. W. Mullins and R. F. Sekerka, "Morphological stability of particle growing by dif- 
fusion or heat flow," J. Appl. Phys., 34, (1963). 
Yu. A. Bychkov and S. V. Iordanskii, "Interphase boundary instability in the phase transi- 
tion process," Zh. Prikl. Mekh. Tekh. Fiz., No. 5 (1980). 
R. F. Sekerka, "Application of the time dependent theory of interface stability to an 
isothermal phase transformation," J. Phys. Chem. Solids, 28, No. 6 (1967). 
I. M. Lifshits and V. V. Slezov, "Kinetics of diffusion decomposition of supersaturated 
solid solutions," Zh. Eksp. Teor. Fiz., 35, No. 2 (1958). 
E. M. Lifshits and L. P. Pitaevskii, Physical Kinetics [in Russian], Nauka, Moscow 
(1979). 

728 


